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A general expression of the polarization factor of multi-diffracted beams is

formulated. By assigning the diffracted beam direction of each diffraction

process as the y axis of a Cartesian coordinate system, the polarization factor of

multi-diffraction processes can be easily calculated for polarized and

unpolarized beams without being limited by the number of diffraction processes.

The method can be applied to processes with more than three scattering events

such as multiple diffraction and extinction.

1. Introduction

Polarization factors have been formulated by several authors

(Whittaker, 1953; Azároff, 1955; Vincent, 1982). In these studies the

changes of the electric vector of X-rays in the diffraction processes

were carefully checked geometrically and polarization factors were

derived. Dwiggins (1983) formulated polarization factors by repeated

matrix multiplication applicable to multiple coherent scattering of

X-rays. However, the transformation matrix Ts of equation (1) of

Dwiggins (1983) does not provide a generally applicable expression.

The polarization factor of three-wave multiple diffraction processes

remained a problem to be solved. It was investigated experimentally

by Luh & Chang (1991) and was elaborately formulated by Sheludko

(2004, 2005) taking into account the condition for three-wave

diffraction to occur. In the present article the polarization factor for a

general case is formulated. The y axis of the Cartesian coordinates is

always taken as the propagating direction of the diffracted beam, as

was done by Whittaker (1953). It is assumed that the diffraction for

the reflection of which the polarization factor is calculated is clearly

defined, say, in the laboratory coordinates. The method can be

applied to any multi-diffraction process and can be easily coded into a

computer program.

In our studies of multiple diffraction it became evident that the

chance of two reciprocal points being simultaneously located on the

Ewald sphere is considerable in PtP2 (Tanaka et al., 1994) and CeB6

(Makita et al., 2007, 2008) because of the finite size of the reciprocal

points. Even in a synchrotron radiation experiment with parallel

incident X-rays producing a very narrow full width at half-maximum

(FWHM), most of the reflections measured at the bisecting position

are seriously affected by multiple diffraction (Takenaka et al., 2010).

For crystals with heavy atoms like Pt and Ce, multiple diffraction

cannot be neglected. Measurements avoiding it were done by rotating

the crystal around the scattering vector using the method of Tanaka

& Saito (1975) of indexing the secondary reflections and calculating

the intensity perturbation. The perturbation of the intensity is

calculated based on the method of Moon & Shull (1964). Since the

number of secondary reciprocal points is usually a few tens and

sometimes exceeds a hundred, a general expression for the polar-

ization factor for X-rays diffracted more than twice has to be

formulated without any restriction to the directions of the relevant

beams. Therefore, a general expression not limited by the number of

diffraction processes was formulated which allows the polarization

factors to be computed in a consecutive manner following the

diffraction processes.

2. Cartesian coordinates and transformation between them

Let a beam proceeding along j0 be diffracted consecutively at O1, O2,

. . . , Oi�1, Oi, . . . , along the unit vectors j1, j2, . . . , ji�1, ji, . . . ,

respectively. Usually j0 is parallel to the beam from the X-ray source

to a monochromator at O1. Although a double-crystal mono-

chromator is often used in the synchrotron experiments, in the

present study the crystal is assumed to be located at O2 for simplicity.

Diffraction processes such as extinction and multiple diffraction take

place in the crystal and occur consecutively at O3, O4 and so on.

When an analyser crystal is used before the counter, it is the last

Figure 1
Definition of the Cartesian coordinates for the incident and diffracted beams of the
first and second diffraction processes at O1 and O2. The monochromator is located
at O1. The incident polarized beam from an X-ray source with the electric vector E
inclined ’ to the y0� z0 plane is diffracted at O1 along y1. It is diffracted again at O2

along y2. z2 is in the plane of y2 and z1. For the process at O2 and succeeding
diffraction processes, the angles � and � are the polar coordinates of the unit vector
along the diffracted beams defined in terms of the coordinates of the immediately
preceding process, as illustrated here.



diffraction point. Cartesian coordinates are attached to each Oi and

the unit vectors along the xi, yi and zi axes are defined as ii, ji and ki.

Since relative directions of the diffracted beams determine the

polarization factor, translation of these coordinates has no effect on

the results. Fig. 1 shows x1, y1, z1 axes at O1, x2, y2, z2 axes at O2 and x1,

y1, z1 axes at O2 translated from O1 to O2. The x1, y1 and z1 axes at O2

or at the monochromator are defined so that the beam from the

monochromator to the crystal is parallel to the y1 axis and the z1 axis

is perpendicular to the plane determined by the incident and the

diffracted beams at the monochromator. A beam diffracted at O1

propagates along y1 and is diffracted at O2 along y2. The unit vector k2

is defined to be in the plane determined by y2 and z1 at O2 in Fig. 1.

The relationship between the two coordinates is similar to all the

other coordinates at O3, O4, . . . , Oi�1, Oi, and so on. As is stated in

the following discussion, the direction of the zi�1 axis is determined

from the successive diffraction processes at O1 to Oi�1 without any

ambiguity.

When the polar coordinates of ji(1, �i, � i) are defined on the

coordinate system (xi�1, yi�1, zi�1) with the origin at Oi as is illu-

strated in Fig. 1, the orthogonal unit vectors ii, ji and ki are expressed

in terms of ii�1, ji�1 and ki�1 as

ji ¼ sin�i cos �iii�1 þ sin�i sin �i ji�1 þ cos�iki�1; ð1Þ

ki ¼ � cos�i cos �iii�1 � cos�i sin �i ji�1 þ sin�iki�1; ð2Þ

ii ¼ ji � ki ¼ sin �iii�1 � cos �i ji�1: ð3Þ

In the following discussion when a vector vm is expressed in the ith

coordinates, it is denoted as vm,i. From equations (1), (2) and (3) any

vector vm,i is related to the same vector vm,i�1 expressed on the

previous coordinates as

vm;i ¼ vm;i�1Tð�i; �iÞ; ð4Þ

Tð�; �Þ ¼
sin � sin� cos � � cos� cos �
� cos � sin� sin � � cos� sin �

0 cos� sin�

0
@

1
A: ð5Þ

Since ji,i is (0, 1, 0) by definition, ji,i�1 is expressed from equation (4)

as

ji;i�1 ¼ ji;i
tTð�i; �iÞ ¼ ðsin�i cos �i; sin�i sin �i; cos�iÞ; ð6Þ

where tT is the transposed matrix of T. When ji,i�1 = (xi�1, yi�1, zi�1) is

known, �i and � i are expressed from equation (6) as

tan�i ¼ ðx
2
i�1 þ y2

i�1Þ
1=2=zi�1; ð7Þ

tan �i ¼ yi�1=xi�1: ð8Þ

In general diffraction experiments the diffraction condition of each

reflection is always known clearly at least in terms of the laboratory

coordinates. The axes at O1 are translated to O2 on the crystal as the

laboratory coordinates in the present study. When k0 (= k1) is defined

as j0� j1, the angles (�1, �1) of j1 at O1 are (�/2, �/2 + 2�m), where �m

is the Bragg angle of the monochromator, and j1,0 becomes

j1;0 ¼ j1;1
tTð�1; �1Þ ¼ ð0; 1; 0ÞtTð�=2; �=2þ 2�mÞ

¼ ð� sin 2�m; cos 2�m; 0Þ: ð9Þ

When the beam from O1 along j1 is diffracted at O2, the direction of

the diffracted beam j2,1 becomes, using equations (4) or (6),

j2;1 ¼ j2;2
tTð�2; �2Þ ¼ ð0; 1; 0ÞtTð�2; �2Þ

¼ ðsin�2 cos �2; sin�2 sin �2; cos�2Þ: ð10Þ

Since j2,1 is usually known from the diffraction condition, �2 and �2

are evaluated using equations (7) and (8). When the diffracted beam

along j2 proceeds to O3 and is diffracted along j3, then using equation

(4) consecutively

j3;3 ¼ j3;2Tð�3; �3Þ ¼ j3;1Tð�2; �2ÞTð�3; �3Þ: ð11Þ

Since the laboratory coordinates of j3,1 are known and the angles (�2,

�2) are already determined by equation (10), �3 and �3 are obtained

from equations (7) and (8). In this way �i and �i are calculated

consecutively according to the series of the diffraction processes and

the transformation of a vector to any of the series of the coordinate

systems is possible if the diffraction conditions of the relevant

reflections are defined at least in one of the series of the coordinate

systems, which is usually the laboratory coordinate system.

3. Polarization factor

Once the matrices T in equation (5) are known, the polarization

factor is calculated systematically. In the first process at O1 the unit

vector k0 is defined to be perpendicular to the incident and diffracted

beams, and the incident beam propagating along j0 is assumed to be

polarized with the polarization plane inclined by ’ to the plane

defined by j0 and k0. The electric field vector E0 with the amplitude E0

of the incident X-ray is divided into two components E0 = (E0sin ’, 0,

E0cos ’) perpendicular to the propagating direction of the X-rays

along j0. Since the electromagnetic wave does not have a component

along the direction y of the propagation, E00;i at the ith process on the

ith coordinates is calculated from equation (4) as

E00;i ¼ ½E0;i�xi
; ðE0;iÞyi

; ðE0;iÞzi
¼ E00;i�1Tð�i; �iÞ

¼ ½ðE0;i�1Þxi�1
; 0; ðE0;i�1Þzi�1

�Tð�i; �iÞ: ð12Þ

E0 decays after each diffraction process, because ðE0;iÞyi
in equation

(12) is not zero. Only ðE0;iÞxi
and ðE0;iÞzi

are transmitted to the next

process and are correlated to the polarization effect of the ith

diffraction process. Therefore E00;i is replaced by E000;i:

E000;i ¼ ½ðE0;iÞxi
; 0; ðE0;iÞzi

�: ð13Þ

The null element of the yi�1 component of E0,i�1 of equation (12) and

no contribution of ðE0;iÞyi
to the electric field after the ith process

indicate the second row and column of T are not necessary for the

calculation of the polarization factor. Therefore, all the electric

vectors as well as E0 are truncated hereinafter to two-dimensional

ones by deleting the y component as follows:

E0;i ¼ ½ðE0;iÞxi
; ðE0;iÞzi

�: ð14Þ

E0,i is expressed on the ith coordinate system using the products of

two-dimensional matrices D(�i, � i) made by removing the second row

and column from each T and applying equation (12) i times as

E0;i ¼ E0;i�1Dð�i; �iÞ ¼ E0

Yi

k¼1

Dð�k; �kÞ � E0Ui: ð15Þ

Since the (2,1) element of D is always zero as is evident from equation

(5), ðE0;iÞxi
and ðE0;iÞzi

are expressed as

ðE0;iÞxi
¼ E0fUig11 sin’ ð16Þ

ðE0;iÞzi
¼ E0ðfUig12 sin’þ fUig22 cos ’Þ; ð17Þ

where {Ui}mn is an (m, n) element of the matrix Ui. When the incident

beam is polarized and the laboratory system is the jth process (j < i),
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the polarization factor pi of the beam diffracted i times is calculated

as

pi ¼ ½ðE0;iÞ
2
xi
þ ðE0;iÞ

2
zi
�=½ðE0;jÞ

2
xj
þ ðE0;jÞ

2
zj
�

¼ ½ðfUig11 sin ’Þ2 þ ðfUig12 sin ’þ fUig22 cos ’Þ2�

� ½ðfUjg11 sin’Þ2 þ ðfUjg12 sin ’þ fUjg22 cos ’Þ2��1:

ð18Þ

When the incident beam is not polarized, each term in the above

equation is averaged for ’ as was done by Whittaker (1953) and the

polarization factor becomes

pi ¼ ðfUig
2
11 þ fUig

2
12 þ fUig

2
22Þ=fUjg

2
11 þ fUjg

2
12 þ fUjg

2
22Þ: ð19Þ

4. Examples of the polarization factor of X-rays diffracted
more than twice

4.1. Synchrotron experiments with a double-crystal monochromator

In synchrotron experiments a double-crystal monochromator with

two parallel planes is often used. When the Bragg angle of the

monochromator is 2�m, the polarization factor of a reflection at a

general position is calculated using the matrix U3,

U3 ¼ D1ð�=2; �=2� 2�mÞD2ð�=2; �=2þ 2�mÞD3ð�3; �3Þ: ð20Þ

Since ðE0;iÞ
2
xi

is multiplied by sin2’ as is evident from equation (16)

and since sin2’ is less than 0.01 when ’ is less than 5.74�, the x

component of the synchrotron radiation can be neglected when the

double-crystal monochromator is used, unless the experiment needs

an accuracy better than 1%.

4.2. General experiment affected by extinction and multiple

diffraction

When monochromated and unpolarized X-rays are incident on the

crystal as in Fig. 1 and the intensity of the primary reflection h2 is

measured, T matrices are

T1 ¼ Tð�=2; �=2þ 2�mÞ; ð21Þ

T2 ¼ Tð�2; �2Þ: ð22Þ

When h2 with Bragg angle � is further diffracted into the incident

beam direction, extinction occurs and from equation (4)

j33 ¼ j32T3 ¼ j31T2T3: ð23Þ

Since j33 and j31 are (0, 1, 0),

T2T3 ¼ I; ð24Þ

where I is the unit matrix. However, D2D3 is not the unit matrix and

the polarization factors of the third beam become, from equation (19)

since �2 = �3 = �/2, �2 = �/2 � 2� and �3 = �/2 + 2�,

p3 ¼ ðfU3g
2
11 þ fU3g

2
22Þ=fU1g

2
11 þ fU1g

2
22Þ

¼ ð1þ cos2 2�m cos4 2�Þ=ð1þ cos2 2�mÞ; ð25Þ

when the incident and primary beams are on the equatorial plane. In

an experiment for reflections at a general position, x and z compo-

nents in equations (16) and (17) should be used for the extinction

correction by Becker & Coppens (1974a,b, 1975).

When a secondary reflection h3 causes the multiple diffraction, T3

= T(�3, �3) is necessary. The polarization factors for the two multiple

diffraction processes (Moon & Shull, 1964) look similar but are

different. One is the case where the diffracted beam along j2 is

diffracted again into the direction along j3 as h23 = h3 � h2 reflection

(0–2–3 process), and the other is the case where diffracted beam

along j3 is diffracted back to the j2 direction (0–3–2 process) as h32 =

h2 � h3 reflection. T1T2T3 and T1T3T2 are used for the first and the

second cases, respectively. The polarization factors are derived from

equations (18) and (19), respectively, for the investigations with

laboratory X-rays by Funahashi et al. (2010), and for the synchrotron

experiment by Takenaka et al. (2010).
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