Acta Crystallographica Section A

Foundations of
 Crystallography

ISSN 0108-7673

Received 13 November 2009
Accepted 5 January 2010

A general expression of the polarization factor for multi-diffraction processes

Kiyoaki Tanaka, ${ }^{\text {a }}$ * Yasuyuki Takenaka, ${ }^{\text {b }}$ Shiro Funahashi, ${ }^{\text {a }}$ Terutoshi Sakakura ${ }^{\text {a }}$ and Takashi Komoria ${ }^{\text {a,c }}$

${ }^{\text {a }}$ Graduate School of Engineering, Nagoya Institute of Technology, Japan, ${ }^{\text {b }}$ Hokkaido University of Education at Hakodate, Japan, and ${ }^{\text {c }}$ Toyota Industries Corporation, Japan. Correspondence e-mail: tanaka.kiyoaki@nitech.ac.jp

Abstract

A general expression of the polarization factor of multi-diffracted beams is formulated. By assigning the diffracted beam direction of each diffraction process as the y axis of a Cartesian coordinate system, the polarization factor of multi-diffraction processes can be easily calculated for polarized and unpolarized beams without being limited by the number of diffraction processes. The method can be applied to processes with more than three scattering events such as multiple diffraction and extinction.

(C) 2010 International Union of Crystallography Printed in Singapore - all rights reserved
formulated without any restriction to the directions of the relevant beams. Therefore, a general expression not limited by the number of diffraction processes was formulated which allows the polarization factors to be computed in a consecutive manner following the diffraction processes.

2. Cartesian coordinates and transformation between them

Let a beam proceeding along \mathbf{j}_{0} be diffracted consecutively at O_{1}, O_{2}, $\ldots, O_{i-1}, O_{i}, \ldots$, along the unit vectors $\mathbf{j}_{1}, \mathbf{j}_{2}, \ldots, \mathbf{j}_{i-1}, \mathbf{j}_{i}, \ldots$, respectively. Usually \mathbf{j}_{0} is parallel to the beam from the X-ray source to a monochromator at O_{1}. Although a double-crystal monochromator is often used in the synchrotron experiments, in the present study the crystal is assumed to be located at O_{2} for simplicity. Diffraction processes such as extinction and multiple diffraction take place in the crystal and occur consecutively at O_{3}, O_{4} and so on. When an analyser crystal is used before the counter, it is the last

Figure 1
Definition of the Cartesian coordinates for the incident and diffracted beams of the first and second diffraction processes at O_{1} and O_{2}. The monochromator is located at O_{1}. The incident polarized beam from an X-ray source with the electric vector \mathbf{E} inclined φ to the $y_{0}-z_{0}$ plane is diffracted at O_{1} along y_{1}. It is diffracted again at O_{2} along $y_{2} \cdot z_{2}$ is in the plane of y_{2} and z_{1}. For the process at O_{2} and succeeding diffraction processes, the angles χ and γ are the polar coordinates of the unit vector along the diffracted beams defined in terms of the coordinates of the immediately preceding process, as illustrated here.
diffraction point. Cartesian coordinates are attached to each O_{i} and the unit vectors along the x_{i}, y_{i} and z_{i} axes are defined as $\mathbf{i}_{i}, \mathbf{j}_{i}$ and \mathbf{k}_{i}. Since relative directions of the diffracted beams determine the polarization factor, translation of these coordinates has no effect on the results. Fig. 1 shows x_{1}, y_{1}, z_{1} axes at $O_{1}, x_{2}, y_{2}, z_{2}$ axes at O_{2} and x_{1}, y_{1}, z_{1} axes at O_{2} translated from O_{1} to O_{2}. The x_{1}, y_{1} and z_{1} axes at O_{2} or at the monochromator are defined so that the beam from the monochromator to the crystal is parallel to the y_{1} axis and the z_{1} axis is perpendicular to the plane determined by the incident and the diffracted beams at the monochromator. A beam diffracted at O_{1} propagates along \mathbf{y}_{1} and is diffracted at O_{2} along \mathbf{y}_{2}. The unit vector \mathbf{k}_{2} is defined to be in the plane determined by y_{2} and z_{1} at O_{2} in Fig. 1 . The relationship between the two coordinates is similar to all the other coordinates at $O_{3}, O_{4}, \ldots, O_{i-1}, O_{i}$, and so on. As is stated in the following discussion, the direction of the z_{i-1} axis is determined from the successive diffraction processes at O_{1} to O_{i-1} without any ambiguity.
When the polar coordinates of $\mathbf{j}_{i}\left(1, \chi_{i}, \gamma_{i}\right)$ are defined on the coordinate system $\left(x_{i-1}, y_{i-1}, z_{i-1}\right)$ with the origin at O_{i} as is illustrated in Fig. 1, the orthogonal unit vectors $\mathbf{i}_{i}, \mathbf{j}_{i}$ and \mathbf{k}_{i} are expressed in terms of $\mathbf{i}_{i-1}, \mathbf{j}_{i-1}$ and \mathbf{k}_{i-1} as

$$
\begin{gather*}
\mathbf{j}_{i}=\sin \chi_{i} \cos \gamma_{i} \mathbf{i}_{i-1}+\sin \chi_{i} \sin \gamma_{i} \mathbf{j}_{i-1}+\cos \chi_{i} \mathbf{k}_{i-1}, \tag{1}\\
\mathbf{k}_{i}=-\cos \chi_{i} \cos \gamma_{i} \mathbf{i}_{i-1}-\cos \chi_{i} \sin \gamma_{i} \mathbf{j}_{i-1}+\sin \chi_{i} \mathbf{k}_{i-1}, \tag{2}\\
\mathbf{i}_{i}=\mathbf{j}_{i} \times \mathbf{k}_{i}=\sin \gamma_{i} \mathbf{i}_{i-1}-\cos \gamma_{i} \mathbf{j}_{i-1} . \tag{3}
\end{gather*}
$$

In the following discussion when a vector \mathbf{v}_{m} is expressed in the i th coordinates, it is denoted as $\mathbf{v}_{m, i}$. From equations (1), (2) and (3) any vector $\mathbf{v}_{m, i}$ is related to the same vector $\mathbf{v}_{m, i-1}$ expressed on the previous coordinates as

$$
\begin{gather*}
\mathbf{v}_{m, i}=\mathbf{v}_{m, i-1} T\left(\chi_{i}, \gamma_{i}\right), \tag{4}\\
T(\chi, \gamma)=\left(\begin{array}{ccc}
\sin \gamma & \sin \chi \cos \gamma & -\cos \chi \cos \gamma \\
-\cos \gamma & \sin \chi \sin \gamma & -\cos \chi \sin \gamma \\
0 & \cos \chi & \sin \chi
\end{array}\right) . \tag{5}
\end{gather*}
$$

Since $\mathbf{j}_{i, i}$ is $(0,1,0)$ by definition, $\mathbf{j}_{i, i-1}$ is expressed from equation (4) as

$$
\begin{equation*}
\mathbf{j}_{i, i-1}=\mathbf{j}_{i, i}{ }^{t} T\left(\chi_{i}, \gamma_{i}\right)=\left(\sin \chi_{i} \cos \gamma_{i}, \sin \chi_{i} \sin \gamma_{i}, \cos \chi_{i}\right), \tag{6}
\end{equation*}
$$

where ${ }^{t} T$ is the transposed matrix of T. When $\mathbf{j}_{i, i-1}=\left(x_{i-1}, y_{i-1}, z_{i-1}\right)$ is known, χ_{i} and γ_{i} are expressed from equation (6) as

$$
\begin{gather*}
\tan \chi_{i}=\left(x_{i-1}^{2}+y_{i-1}^{2}\right)^{1 / 2} / z_{i-1} \tag{7}\\
\tan \gamma_{i}=y_{i-1} / x_{i-1} \tag{8}
\end{gather*}
$$

In general diffraction experiments the diffraction condition of each reflection is always known clearly at least in terms of the laboratory coordinates. The axes at O_{1} are translated to O_{2} on the crystal as the laboratory coordinates in the present study. When $\mathbf{k}_{0}\left(=\mathbf{k}_{1}\right)$ is defined as $\mathbf{j}_{0} \times \mathbf{j}_{1}$, the angles $\left(\chi_{1}, \gamma_{1}\right)$ of \mathbf{j}_{1} at O_{1} are $\left(\pi / 2, \pi / 2+2 \theta_{\mathrm{m}}\right)$, where θ_{m} is the Bragg angle of the monochromator, and $\mathbf{j}_{1,0}$ becomes

$$
\begin{align*}
\mathbf{j}_{1,0} & =\mathbf{j}_{1,1}{ }^{t} T\left(\chi_{1}, \gamma_{1}\right)=(0,1,0)^{t} T\left(\pi / 2, \pi / 2+2 \theta_{\mathrm{m}}\right) \\
& =\left(-\sin 2 \theta_{\mathrm{m}}, \cos 2 \theta_{\mathrm{m}}, 0\right) \tag{9}
\end{align*}
$$

When the beam from O_{1} along \mathbf{j}_{1} is diffracted at O_{2}, the direction of the diffracted beam $\mathbf{j}_{2,1}$ becomes, using equations (4) or (6),

$$
\begin{align*}
\mathbf{j}_{2,1} & =\mathbf{j}_{2,2}{ }^{t} T\left(\chi_{2}, \gamma_{2}\right)=(0,1,0)^{t} T\left(\chi_{2}, \gamma_{2}\right) \\
& =\left(\sin \chi_{2} \cos \gamma_{2}, \sin \chi_{2} \sin \gamma_{2}, \cos \chi_{2}\right) . \tag{10}
\end{align*}
$$

Since $\mathbf{j}_{2,1}$ is usually known from the diffraction condition, χ_{2} and γ_{2} are evaluated using equations (7) and (8). When the diffracted beam along \mathbf{j}_{2} proceeds to O_{3} and is diffracted along \mathbf{j}_{3}, then using equation (4) consecutively

$$
\begin{equation*}
\mathbf{j}_{3,3}=\mathbf{j}_{3,2} T\left(\chi_{3}, \gamma_{3}\right)=\mathbf{j}_{3,1} T\left(\chi_{2}, \gamma_{2}\right) T\left(\chi_{3}, \gamma_{3}\right) . \tag{11}
\end{equation*}
$$

Since the laboratory coordinates of $\mathbf{j}_{3,1}$ are known and the angles (χ_{2}, γ_{2}) are already determined by equation (10), χ_{3} and γ_{3} are obtained from equations (7) and (8). In this way χ_{i} and γ_{i} are calculated consecutively according to the series of the diffraction processes and the transformation of a vector to any of the series of the coordinate systems is possible if the diffraction conditions of the relevant reflections are defined at least in one of the series of the coordinate systems, which is usually the laboratory coordinate system.

3. Polarization factor

Once the matrices T in equation (5) are known, the polarization factor is calculated systematically. In the first process at O_{1} the unit vector \mathbf{k}_{0} is defined to be perpendicular to the incident and diffracted beams, and the incident beam propagating along \mathbf{j}_{0} is assumed to be polarized with the polarization plane inclined by φ to the plane defined by \mathbf{j}_{0} and \mathbf{k}_{0}. The electric field vector \mathbf{E}_{0} with the amplitude E_{0} of the incident X-ray is divided into two components $\mathbf{E}_{0}=\left(E_{0} \sin \varphi, 0\right.$, $E_{0} \cos \varphi$) perpendicular to the propagating direction of the X-rays along \mathbf{j}_{0}. Since the electromagnetic wave does not have a component along the direction y of the propagation, $\mathbf{E}_{0, i}^{\prime}$ at the i th process on the i th coordinates is calculated from equation (4) as

$$
\begin{align*}
\mathbf{E}_{0, i}^{\prime} & =\left[E_{0, i}\right]_{x_{i}},\left(E_{0, i}\right)_{y_{i}},\left(E_{0, i}\right)_{z_{i}}=\mathbf{E}_{0, i-1}^{\prime} T\left(\chi_{i}, \gamma_{i}\right) \\
& =\left[\left(E_{0, i-1}\right)_{x_{i-1}}, 0,\left(E_{0, i-1}\right)_{z_{i-1}}\right] T\left(\chi_{i}, \gamma_{i}\right) . \tag{12}
\end{align*}
$$

\mathbf{E}_{0} decays after each diffraction process, because $\left(E_{0, i}\right)_{y_{i}}$ in equation (12) is not zero. Only $\left(E_{0, i}\right)_{x_{i}}$ and $\left(E_{0, i}\right)_{z_{i}}$ are transmitted to the next process and are correlated to the polarization effect of the i th diffraction process. Therefore $\mathbf{E}_{0, i}^{\prime}$ is replaced by $\mathbf{E}_{0, i}^{\prime \prime}$:

$$
\begin{equation*}
\mathbf{E}_{0, i}^{\prime \prime}=\left[\left(E_{0, i}\right)_{x_{i}}, 0,\left(E_{0, i}\right)_{z_{i}}\right] \tag{13}
\end{equation*}
$$

The null element of the y_{i-1} component of $\mathbf{E}_{0, i-1}$ of equation (12) and no contribution of $\left(E_{0, i}\right)_{y_{i}}$ to the electric field after the i th process indicate the second row and column of T are not necessary for the calculation of the polarization factor. Therefore, all the electric vectors as well as \mathbf{E}_{0} are truncated hereinafter to two-dimensional ones by deleting the y component as follows:

$$
\begin{equation*}
\mathbf{E}_{0, i}=\left[\left(E_{0, i}\right)_{x_{i}},\left(E_{0, i}\right)_{z_{i}}\right] . \tag{14}
\end{equation*}
$$

$\mathbf{E}_{0, i}$ is expressed on the i th coordinate system using the products of two-dimensional matrices $D\left(\chi_{i}, \gamma_{i}\right)$ made by removing the second row and column from each T and applying equation (12) i times as

$$
\begin{equation*}
\mathbf{E}_{0, i}=\mathbf{E}_{0, i-1} D\left(\chi_{i}, \gamma_{i}\right)=\mathbf{E}_{0} \prod_{k=1}^{i} D\left(\chi_{k}, \gamma_{k}\right) \equiv \mathbf{E}_{0} U_{i} . \tag{15}
\end{equation*}
$$

Since the (2,1) element of D is always zero as is evident from equation (5), $\left(E_{0, i}\right)_{x_{i}}$ and $\left(E_{0, i}\right)_{z_{i}}$ are expressed as

$$
\begin{gather*}
\left(E_{0, i}\right)_{x_{i}}=E_{0}\left\{U_{i}\right\}_{11} \sin \varphi \tag{16}\\
\left(E_{0, i}\right)_{z_{i}}=E_{0}\left(\left\{U_{i}\right\}_{12} \sin \varphi+\left\{U_{i}\right\}_{22} \cos \varphi\right) \tag{17}
\end{gather*}
$$

where $\left\{U_{i}\right\}_{m n}$ is an (m, n) element of the matrix U_{i}. When the incident beam is polarized and the laboratory system is the j th process $(j<i)$,
the polarization factor p_{i} of the beam diffracted i times is calculated as

$$
\begin{align*}
p_{i}= & {\left[\left(E_{0, i}\right)_{x_{i}}^{2}+\left(E_{0, i}\right)_{z_{i}}^{2}\right] /\left[\left(E_{0, j}\right)_{x_{j}}^{2}+\left(E_{0, j}\right)_{z_{j}}^{2}\right] } \\
= & {\left[\left(\left\{U_{i}\right\}_{11} \sin \varphi\right)^{2}+\left(\left\{U_{i}\right\}_{12} \sin \varphi+\left\{U_{i}\right\}_{22} \cos \varphi\right)^{2}\right] } \\
& \times\left[\left(\left\{U_{j}\right\}_{11} \sin \varphi\right)^{2}+\left(\left\{U_{j}\right\}_{12} \sin \varphi+\left\{U_{j}\right\}_{22} \cos \varphi\right)^{2}\right]^{-1} . \tag{18}
\end{align*}
$$

When the incident beam is not polarized, each term in the above equation is averaged for φ as was done by Whittaker (1953) and the polarization factor becomes

$$
\begin{equation*}
\left.p_{i}=\left(\left\{U_{i}\right\}_{11}^{2}+\left\{U_{i}\right\}_{12}^{2}+\left\{U_{i}\right\}_{22}^{2}\right) /\left\{U_{j}\right\}_{11}^{2}+\left\{U_{j}\right\}_{12}^{2}+\left\{U_{j}\right\}_{22}^{2}\right) . \tag{19}
\end{equation*}
$$

4. Examples of the polarization factor of X-rays diffracted more than twice

4.1. Synchrotron experiments with a double-crystal monochromator

In synchrotron experiments a double-crystal monochromator with two parallel planes is often used. When the Bragg angle of the monochromator is $2 \theta_{\mathrm{m}}$, the polarization factor of a reflection at a general position is calculated using the matrix U_{3},

$$
\begin{equation*}
U_{3}=D_{1}\left(\pi / 2, \pi / 2-2 \theta_{\mathrm{m}}\right) D_{2}\left(\pi / 2, \pi / 2+2 \theta_{\mathrm{m}}\right) D_{3}\left(\chi_{3}, \gamma_{3}\right) \tag{20}
\end{equation*}
$$

Since $\left(E_{0, i}\right)_{x_{i}}^{2}$ is multiplied by $\sin ^{2} \varphi$ as is evident from equation (16) and since $\sin ^{2} \varphi$ is less than 0.01 when φ is less than 5.74°, the x component of the synchrotron radiation can be neglected when the double-crystal monochromator is used, unless the experiment needs an accuracy better than 1%.

4.2. General experiment affected by extinction and multiple diffraction

When monochromated and unpolarized X-rays are incident on the crystal as in Fig. 1 and the intensity of the primary reflection \mathbf{h}_{2} is measured, T matrices are

$$
\begin{gather*}
T_{1}=T\left(\pi / 2, \pi / 2+2 \theta_{\mathrm{m}}\right), \tag{21}\\
T_{2}=T\left(\chi_{2}, \gamma_{2}\right) . \tag{22}
\end{gather*}
$$

When \mathbf{h}_{2} with Bragg angle θ is further diffracted into the incident beam direction, extinction occurs and from equation (4)

$$
\begin{equation*}
\mathbf{j}_{33}=\mathbf{j}_{32} T_{3}=\mathbf{j}_{31} T_{2} T_{3} . \tag{23}
\end{equation*}
$$

Since \mathbf{j}_{33} and \mathbf{j}_{31} are $(0,1,0)$,

$$
\begin{equation*}
T_{2} T_{3}=I \tag{24}
\end{equation*}
$$

where I is the unit matrix. However, $D_{2} D_{3}$ is not the unit matrix and the polarization factors of the third beam become, from equation (19) since $\chi_{2}=\chi_{3}=\pi / 2, \gamma_{2}=\pi / 2-2 \theta$ and $\gamma_{3}=\pi / 2+2 \theta$,

$$
\begin{align*}
p_{3} & \left.=\left(\left\{U_{3}\right\}_{11}^{2}+\left\{U_{3}\right\}_{22}^{2}\right) /\left\{U_{1}\right\}_{11}^{2}+\left\{U_{1}\right\}_{22}^{2}\right) \\
& =\left(1+\cos ^{2} 2 \theta_{\mathrm{m}} \cos ^{4} 2 \theta\right) /\left(1+\cos ^{2} 2 \theta_{\mathrm{m}}\right) \tag{25}
\end{align*}
$$

when the incident and primary beams are on the equatorial plane. In an experiment for reflections at a general position, x and z components in equations (16) and (17) should be used for the extinction correction by Becker \& Coppens (1974a,b, 1975).

When a secondary reflection \mathbf{h}_{3} causes the multiple diffraction, T_{3} $=T\left(\chi_{3}, \gamma_{3}\right)$ is necessary. The polarization factors for the two multiple diffraction processes (Moon \& Shull, 1964) look similar but are different. One is the case where the diffracted beam along \mathbf{j}_{2} is diffracted again into the direction along \mathbf{j}_{3} as $\mathbf{h}_{23}=\mathbf{h}_{3}-\mathbf{h}_{2}$ reflection ($0-2-3$ process), and the other is the case where diffracted beam along \mathbf{j}_{3} is diffracted back to the \mathbf{j}_{2} direction (0-3-2 process) as $\mathbf{h}_{32}=$ $\mathbf{h}_{2}-\mathbf{h}_{3}$ reflection. $T_{1} T_{2} T_{3}$ and $T_{1} T_{3} T_{2}$ are used for the first and the second cases, respectively. The polarization factors are derived from equations (18) and (19), respectively, for the investigations with laboratory X-rays by Funahashi et al. (2010), and for the synchrotron experiment by Takenaka et al. (2010).

The authors wish to express their gratitude to JST (Japan Science and Technology Agency) for financial support under the programme of Research for Promoting Technological Seeds.

References

Azároff, L. V. (1955). Acta Cryst. 8, 701-704.
Becker, P. J. \& Coppens, P. (1974a). Acta Cryst. A30, 129-147.
Becker, P. J. \& Coppens, P. (1974b). Acta Cryst. A30, 148-153.
Becker, P. J. \& Coppens, P. (1975). Acta Cryst. A31, 417-425.
Dwiggins, C. W. Jr (1983). Acta Cryst. A39, 773-777.
Funahashi, S., Tanaka, K. \& Iga, F. (2010). Acta Cryst. B66. In the press.
Luh, S.-W. \& Chang, S.-L. (1991). Acta Cryst. A47, 502-510.
Makita, R., Tanaka, K. \& Onuki, Y. (2008). Acta Cryst. B64, 534-549.
Makita, R., Tanaka, K., Ōnuki, Y. \& Tatewaki, H. (2007). Acta Cryst. B63, $683-$ 692.

Moon, R. M. \& Shull, C. G. (1964). Acta Cryst. 17, 805-812.
Sheludko, S. (2004). Acta Cryst. A60, 281-282.
Sheludko, S. (2005). Acta Cryst. A61, 528-530.
Takenaka, Y., Sakakura, T., Tanaka, K. \& Kishimoto, S. (2010). In preparation.
Tanaka, K., Kumazawa, S., Tsubokawa, M., Maruno, S. \& Shirotani, I. (1994). Acta Cryst. A50, 246-252.
Tanaka, K. \& Saito, Y. (1975). Acta Cryst. A31, 841-845.
Vincent, M. G. (1982). Acta Cryst. A38, 510-512.
Whittaker, E. J. W. (1953). Acta Cryst. 6, 222-223.

